Western Blot Technique to Resolve Von Willebrand Factor Multimers and Degradation Fragments from LVAD Plasma

Part I: Electrophoresis and Immunoblotting

Agarose Gel

Gel buffer: 0.1\%SDS, 0.375 M Tris-Base
1.0% Agarose $=0.10 \mathrm{~g}$ agarose per 10 mL gel buffer
Prepare $15 \mathrm{ml} /$ cassette

Sample Prep

Dilute plasma 1:40 $(10 \mu \mathrm{l}+390 \mu \mathrm{l})$ in 1 x LDS sample buffer
Heat at $70^{\circ} \mathrm{C}$ for 10 minutes

Electrophoresis

Load 15μ l per lane
Agarose: 60V for 2 hr 30 min
Polyacrylamide: 150V for 1 hr 25 min

Transfer

iBlot, setting P2 for 8 min 30 sec
Block 1 hr in 5\% milk-PBS

Probe for VWF

Incubate for 1 hr in 10mL of primary anti-human vWF 1:500 in milk-PBS
Wash 3 times for 5 minutes in $\sim 20 \mathrm{ml}$ PBS
Incubate for 1 hr in 10 mL of secondary goat anti-rabbit 1:3,000 in milk-PBS
Wash 3 times for 5 minutes in $\sim 20 \mathrm{ml}$ PBS

Image
Develop with 2 mL HRP substrate
Image at high resolution at 10 second intervals, and save images as TIFF files

Probe for Albumin
Wash 3 times for 5 minutes in $\sim 20 \mathrm{ml}$ PBS
Incubate for 20 minutes in 10 mL of HRP-conjugated anti-human albumin 1:10,000 in milk-PBS
Wash 3 times for 5 minutes in $\sim 20 \mathrm{ml}$ PBS
Image for <10 seconds

Part II: Agarose/Polayacrylamide Transfer iBlot Gel to PVDF Membrane

1. Cut all edges from agarose/ polyacrylamide gel and mark top corner
2. Open "bottom" portion of iBlot packet
3. Place gel onto the top of the iBlot layers
4. Wet a blotting sheet with water and place on top of gel
5. Place copper "top" sheet of iBlot packet with gel facing down
6. White foam sheet goes on the top of the iBlot machine with metal on the top right side
7. Close the machine and run at P 2 for $8: 30$ minutes

5\% Milk buffer blocking

1. First block
a. $1 / 500$ dilution in 5% milk
i. $(1)(x)=(1 / 500)(10 \mathrm{ml})$
ii. .02 ml
iii. $20 \mu \mathrm{l}$ antihuman +10 ml milk
2. Second block
a. $1 / 3000$ dilution in 5% milk
i. $(1)(x)=(1 / 3000)(10 \mathrm{ml})$
ii. .003 ml
iii. $3.3 \mu \mathrm{l}$ anti-rabbit +10 ml milk
3. Albumin
a. $1 / 10000$ dilution in 5% milk
i. $(1)(x)=(1 / 10000)(10 \mathrm{ml})$
ii. . 001
ii. $4 \mu \mathrm{l}$ anti-human albumin +40 ml milk
